Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Immunol ; 14: 1129746, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2299293

RESUMEN

Context: Severe acute respiratory syndrome-coronavirus 2 (COVID-19) vaccines may incur changes in thyroid functions followed by mood changes, and patients with Hashimoto thyroiditis (HT) were suggested to bear a higher risk. Objectives: We primarily aim to find whether COVID-19 vaccination could induce potential subsequent thyroid function and mood changes. The secondary aim was to find inflammatory biomarkers associated with risk. Methods: The retrospective, multi-center study recruited patients with HT receiving COVID-19-inactivated vaccines. C-reactive proteins (CRPs), thyroid-stimulating hormones (TSHs), and mood changes were studied before and after vaccination during a follow-up of a 6-month period. Independent association was investigated between incidence of mood state, thyroid functions, and inflammatory markers. Propensity score-matched comparisons between the vaccine and control groups were carried out to investigate the difference. Results: Final analysis included 2,765 patients with HT in the vaccine group and 1,288 patients in the control group. In the matched analysis, TSH increase and mood change incidence were both significantly higher in the vaccine group (11.9% versus 6.1% for TSH increase and 12.7% versus 8.4% for mood change incidence). An increase in CRP was associated with mood change (p< 0.01 by the Kaplan-Meier method) and severity (r = 0.75) after vaccination. Baseline CRP, TSH, and antibodies of thyroid peroxidase (anti-TPO) were found to predict incidence of mood changes. Conclusion: COVID-19 vaccination seemed to induce increased levels and incidence of TSH surge followed by mood changes in patients with HT. Higher levels of pre-vaccine serum TSH, CRP, and anti-TPO values were associated with higher incidence in the early post-vaccine phase.


Asunto(s)
COVID-19 , Enfermedad de Hashimoto , Humanos , Vacunas contra la COVID-19/efectos adversos , Estudios Retrospectivos , COVID-19/prevención & control , COVID-19/complicaciones , Tirotropina , Anticuerpos
2.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2298824

RESUMEN

Sarcopenia, characterized by age-related loss of muscle mass, strength, and decreased physical performance, is a growing public health challenge amid the rapidly ageing population. As there are no approved drugs that target sarcopenia, it has become increasingly urgent to identify promising pharmacological interventions. In this study, we conducted an integrative drug repurposing analysis utilizing three distinct approaches. Firstly, we analyzed skeletal muscle transcriptomic sequencing data in humans and mice using gene differential expression analysis, weighted gene co-expression analysis, and gene set enrichment analysis. Subsequently, we employed gene expression profile similarity assessment, hub gene expression reversal, and disease-related pathway enrichment to identify and repurpose candidate drugs, followed by the integration of findings with rank aggregation algorithms. Vorinostat, the top-ranking drug, was also validated in an in vitro study, which demonstrated its efficacy in promoting muscle fiber formation. Although still requiring further validation in animal models and human clinical trials, these results suggest a promising drug repurposing prospect in the treatment and prevention of sarcopenia.

3.
J Environ Public Health ; 2023: 6915125, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2223812

RESUMEN

In the context of the ongoing global epidemic of COVID-19 and frequent virus mutations, the implementation of vaccine is the key to the prevention and control of the epidemic at this stage. In order to provide recommendations and evidence to support global epidemic prevention and control and vaccination efforts from the perspectives of health communication and individual psychological perceptions and to improve the vaccination rate of COVID-19 vaccine among appropriate populations, this study conducted a questionnaire survey in eight districts of Beijing and collected a total of 525 valid data points. A health belief model was used to examine the predictors of COVID-19 vaccination behavior, and the relationship between different COVID-19 vaccine information dissemination channels, residents' health beliefs, and propensity to vaccinate was analyzed. This study found the following: (1) among new media, interpersonal communication and traditional media communication channels, the new media channel had the largest number of audiences; (2) the personal health beliefs of audiences in the three information channels differed significantly, with the highest perceived benefits and lowest perceived barriers in the interpersonal communication channel and the highest perceived barriers in the new media communication channel; (3) the health belief model was a significant predictor, with perceived benefits and barriers being the most effective attitudinal variables for predicting vaccination intention. This study is valuable for advancing and improving vaccine communication diffusion research and promoting wider application of the health belief model and communication media in health communication topics.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Difusión de la Información , China/epidemiología , Vacunación , Intención
4.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2081440

RESUMEN

Coronavirus disease 2019 (COVID-19) patients with liver dysfunction (LD) have a higher chance of developing severe and critical disease. The routine hepatic biochemical parameters ALT, AST, GGT, and TBIL have limitations in reflecting COVID-19-related LD. In this study, we performed proteomic analysis on 397 serum samples from 98 COVID-19 patients to identify new biomarkers for LD. We then established 19 simple machine learning models using proteomic measurements and clinical variables to predict LD in a development cohort of 74 COVID-19 patients with normal hepatic biochemical parameters. The model based on the biomarker ANGL3 and sex (AS) exhibited the best discrimination (time-dependent AUCs: 0.60-0.80), calibration, and net benefit in the development cohort, and the accuracy of this model was 69.0-73.8% in an independent cohort. The AS model exhibits great potential in supporting optimization of therapeutic strategies for COVID-19 patients with a high risk of LD. This model is publicly available at https://xixihospital-liufang.shinyapps.io/DynNomapp/.


Asunto(s)
COVID-19 , Hepatopatías , Humanos , Proteómica , Aprendizaje Automático
5.
Processes ; 10(2):326, 2022.
Artículo en Inglés | MDPI | ID: covidwho-1674763

RESUMEN

The coronavirus disease 19 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has a rapidly increasing prevalence and has caused significant morbidity/mortality. Despite the availability of many vaccines that can offer widespread immunization, it is also important to reach effective treatment for COVID-19 patients. However, the development of novel drug therapeutics is usually a time-consuming and costly process, and therefore, repositioning drugs that were previously approved for other purposes could have a major impact on the fight against COVID-19. Here, we first identified lung-specific gene regulatory/interaction subnetworks (COVID-19-related genes modules) enriched for COVID-19-associated genes obtained from GWAS and text mining. We then screened the targets of 220 approved drugs from DrugBank, obtained their drug-induced gene expression profiles in the LINCS database, and constructed lung-specific drug-related gene modules. By applying an integrated network-based approach to quantify the interactions of the COVID-19-related gene modules and drug-related gene modules, we prioritized 13 approved drugs (e.g., alitretinoin, clocortolone, terazosin, doconexent, and pergolide) that could potentially be repurposed for the treatment of COVID-19. These findings provide important and timely insights into alternative therapeutic options that should be further explored as COVID-19 continues to spread.

6.
Cell Rep ; 38(3): 110271, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1588135

RESUMEN

The utility of the urinary proteome in infectious diseases remains unclear. Here, we analyzed the proteome and metabolome of urine and serum samples from patients with COVID-19 and healthy controls. Our data show that urinary proteins effectively classify COVID-19 by severity. We detect 197 cytokines and their receptors in urine, but only 124 in serum using TMT-based proteomics. The decrease in urinary ESCRT complex proteins correlates with active SARS-CoV-2 replication. The downregulation of urinary CXCL14 in severe COVID-19 cases positively correlates with blood lymphocyte counts. Integrative multiomics analysis suggests that innate immune activation and inflammation triggered renal injuries in patients with COVID-19. COVID-19-associated modulation of the urinary proteome offers unique insights into the pathogenesis of this disease. This study demonstrates the added value of including the urinary proteome in a suite of multiomics analytes in evaluating the immune pathobiology and clinical course of COVID-19 and, potentially, other infectious diseases.


Asunto(s)
COVID-19/orina , Inmunidad , Metaboloma , Proteoma/análisis , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/inmunología , COVID-19/patología , Estudios de Casos y Controles , Niño , Preescolar , China , Estudios de Cohortes , Femenino , Humanos , Inmunidad/fisiología , Masculino , Metaboloma/inmunología , Metabolómica , Persona de Mediana Edad , Gravedad del Paciente , Proteoma/inmunología , Proteoma/metabolismo , Proteómica , Urinálisis/métodos , Adulto Joven
7.
Patient Educ Couns ; 105(7): 2623-2624, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1560778
8.
J Proteome Res ; 21(1): 90-100, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1531980

RESUMEN

RT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID-19. We analyzed the proteome of 275 inactivated serum samples from 54 out of 144 COVID-19 patients and shortlisted 42 regulated proteins in the severe group and 12 in the non-severe group. Using these regulated proteins and several key clinical indexes, including days after symptoms onset, platelet counts, and magnesium, we developed two machine learning models to predict nucleic acid positivity, with an AUC of 0.94 in severe cases and 0.89 in non-severe cases, respectively. Our data suggest the potential of using a serum protein-based machine learning model to monitor COVID-19 progression, thus complementing swab RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein measurement is not currently widely accessible in clinic.


Asunto(s)
COVID-19 , Humanos , Proteómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Manejo de Especímenes
9.
ACS Appl Mater Interfaces ; 13(37): 44136-44146, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1402018

RESUMEN

With the ongoing global pandemic of coronavirus disease 2019 (COVID-19), there is an increasing quest for more accessible, easy-to-use, rapid, inexpensive, and high-accuracy diagnostic tools. Traditional disease diagnostic methods such as qRT-PCR (quantitative reverse transcription-PCR) and ELISA (enzyme-linked immunosorbent assay) require multiple steps, trained technicians, and long turnaround time that may worsen the disease surveillance and pandemic control. In sight of this situation, a rapid, one-step, easy-to-use, and high-accuracy diagnostic platform will be valuable for future epidemic control, especially for regions with scarce medical resources. Herein, we report a magnetic particle spectroscopy (MPS) platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biomarkers: spike and nucleocapsid proteins. This technique monitors the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses their higher harmonics as a measure of the nanoparticles' binding states. By anchoring polyclonal antibodies (pAbs) onto MNP surfaces, these nanoparticles function as nanoprobes to specifically bind to target analytes (SARS-CoV-2 spike and nucleocapsid proteins in this work) and form nanoparticle clusters. This binding event causes detectable changes in higher harmonics and allows for quantitative and qualitative detection of target analytes in the liquid phase. We have achieved detection limits of 1.56 nM (equivalent to 125 fmole) and 12.5 nM (equivalent to 1 pmole) for detecting SARS-CoV-2 spike and nucleocapsid proteins, respectively. This MPS platform combined with the one-step, wash-free, nanoparticle clustering-based assay method is intrinsically versatile and allows for the detection of a variety of other disease biomarkers by simply changing the surface functional groups on MNPs.


Asunto(s)
COVID-19/virología , Nanopartículas/química , Proteínas de la Nucleocápside/química , SARS-CoV-2/química , Análisis Espectral/métodos , Glicoproteína de la Espiga del Coronavirus/química , Análisis por Conglomerados , Humanos
10.
J Phys Chem C Nanomater Interfaces ; 125(31): 17221-17231, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1371585

RESUMEN

In recent years, magnetic particle spectroscopy (MPS) has become a highly sensitive and versatile sensing technique for quantitative bioassays. It relies on the dynamic magnetic responses of magnetic nanoparticles (MNPs) for the detection of target analytes in the liquid phase. There are many research studies reporting the application of MPS for detecting a variety of analytes including viruses, toxins, nucleic acids, and so forth. Herein, we report a modified version of the MPS platform with the addition of a one-stage lock-in design to remove the feedthrough signals induced by external driving magnetic fields, thus capturing only MNP responses for improved system sensitivity. This one-stage lock-in MPS system is able to detect as low as 781 ng multi-core Nanomag50 iron oxide MNPs (micromod Partikeltechnologie GmbH) and 78 ng single-core SHB30 iron oxide MNPs (Ocean NanoTech). We first demonstrated the performance of this MPS system for bioassay-related applications. Using the SARS-CoV-2 spike protein as a model, we have achieved a detection limit of 125 nM (equal to 5 pmole) for detecting spike protein molecules in the liquid phase. In addition, using a streptavidin-biotin binding system as a proof-of-concept, we show that these single-core SHB30 MNPs can be used for Brownian relaxation-based bioassays while the multi-core Nanomag50 cannot be used. The effects of MNP amount on the concentration-dependent response profiles for detecting streptavidin were also investigated. Results show that by using a lower concentration/ amount of MNPs, concentration-response curves shift to a lower concentration/amount of target analytes. This lower concentration-response indicates the possibility of improved bioassay sensitivities by using lower amounts of MNPs.

11.
Acad Emerg Med ; 28(10): 1207-1208, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1322721
12.
Commun Biol ; 4(1): 35, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1065967

RESUMEN

Coronavirus disease 2019 (COVID-19) is a global pandemic posing significant health risks. The diagnostic test sensitivity of COVID-19 is limited due to irregularities in specimen handling. We propose a deep learning framework that identifies COVID-19 from medical images as an auxiliary testing method to improve diagnostic sensitivity. We use pseudo-coloring methods and a platform for annotating X-ray and computed tomography images to train the convolutional neural network, which achieves a performance similar to that of experts and provides high scores for multiple statistical indices (F1 scores > 96.72% (0.9307, 0.9890) and specificity >99.33% (0.9792, 1.0000)). Heatmaps are used to visualize the salient features extracted by the neural network. The neural network-based regression provides strong correlations between the lesion areas in the images and five clinical indicators, resulting in high accuracy of the classification framework. The proposed method represents a potential computer-aided diagnosis method for COVID-19 in clinical practice.


Asunto(s)
COVID-19/diagnóstico , Aprendizaje Profundo , Redes Neurales de la Computación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , SARS-CoV-2/aislamiento & purificación , Tomografía Computarizada por Rayos X/métodos , Algoritmos , COVID-19/epidemiología , COVID-19/virología , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Sensibilidad y Especificidad
13.
Cell ; 184(3): 775-791.e14, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1014394

RESUMEN

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.


Asunto(s)
COVID-19/metabolismo , Regulación de la Expresión Génica , Proteoma/biosíntesis , Proteómica , SARS-CoV-2/metabolismo , Autopsia , COVID-19/patología , COVID-19/terapia , Femenino , Humanos , Masculino , Especificidad de Órganos
14.
Cell ; 182(1): 59-72.e15, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: covidwho-401448

RESUMEN

Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments. We identified molecular changes in the sera of COVID-19 patients compared to other groups implicating dysregulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic suppression. This study revealed characteristic protein and metabolite changes in the sera of severe COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.


Asunto(s)
Infecciones por Coronavirus/sangre , Metabolómica , Neumonía Viral/sangre , Proteómica , Adulto , Aminoácidos/metabolismo , Biomarcadores/sangre , COVID-19 , Análisis por Conglomerados , Infecciones por Coronavirus/fisiopatología , Femenino , Humanos , Metabolismo de los Lípidos , Aprendizaje Automático , Macrófagos/patología , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/fisiopatología , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA